Sampling Algebraic Varieties for SOS Optimization

Diego Cifuentes

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Joint work with **Pablo A. Parrilo** (MIT)

Coloquio Uniandes - 2017

Polynomial optimization on varieties

We consider a problem of the form

$$\min_{x} \quad p(x)$$

s.t. $x \in \mathcal{V}$

where $p \in \mathbb{R}[x]$ is a polynomial and $\mathcal{V} \subset \mathbb{R}^n$ is an algebraic variety.

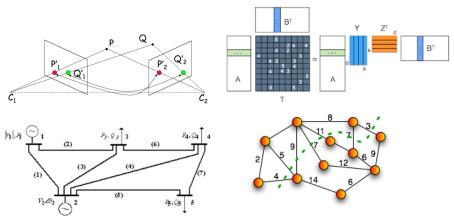
A variety is the zero set of some set of polynomial equations:

$$\mathcal{V} = \{x \in \mathbb{R}^n : h_j(x) = 0, \ 1 \le j \le m\}, \qquad h_j \in \mathbb{R}[x].$$

Examples: SO(n), Grassmannian, Stiefel manifold, rank k tensors, $\{0,1\}^n$

Polynomial optimization on varieties

Several applications: triangulation (vision), matrix completion, optimal power flow, low rank approximation, combinatorial optimization.



Sum-of-Squares (SOS)

For a polynomial $p \in \mathbb{R}[x]$ consider deciding nonnegavity

is
$$p(x) \ge 0$$
 for all $x \in \mathcal{V}$?

This is computationally hard.

Tractable alternative: Convex relaxations based on *semidefinite* programming (SDP).

Sum-of-Squares (SOS)

For a polynomial $p \in \mathbb{R}[x]$ consider *deciding* nonnegavity

is
$$p(x) \ge 0$$
 for all $x \in \mathcal{V}$?

This is computationally hard.

Tractable alternative: Convex relaxations based on *semidefinite* programming (SDP).

A *sufficient* condition is the existence of some $F \in \mathbb{R}[x]$ such that

$$p(z) = F(z)$$
 for all $z \in \mathcal{V}$ (i.e., $p \equiv F \mod I(\mathcal{V})$)
 $F(x)$ is SOS (i.e., $F(x) = \sum_{i} f_i^2(x)$)

For a bound $d \in \mathbb{N}$, a d- $SOS(\mathcal{V})$ certificate is an $F \in \mathbb{R}[x]$ s.t.

$$p(z) = F(z)$$
 for all $z \in \mathcal{V}$, $F(x)$ is SOS, $\deg(F) \le d$

For a bound $d \in \mathbb{N}$, a d- $SOS(\mathcal{V})$ certificate is an $F \in \mathbb{R}[x]$ s.t.

$$p(z) = F(z)$$
 for all $z \in \mathcal{V}$, $F(x)$ is SOS, $\deg(F) \le d$

Computing SOS(V) certificates:

- Compute a Gröbner bases of $I(\mathcal{V})$.
- Find F using semidefinite programming (SDP) polynomial time.
- In some cases we know a Gröbner basis (e.g., $V = \{0, 1\}^n$).
- But it is typically very hard to find it.

For a bound $d \in \mathbb{N}$, a d- $SOS(\mathcal{V})$ certificate is an $F \in \mathbb{R}[x]$ s.t.

$$p(z) = F(z)$$
 for all $z \in \mathcal{V}$, $F(x)$ is SOS, $\deg(F) \le d$

Equations SOS: relax the first condition to $p = F + \sum_i h_i g_i$, where $\mathcal{V} =$ $\{x: h_i(x) = 0\}_i$. Although often used in practice,

- this approach is weaker than SOS(V).
- SDP is larger, e.g., PSD matrix size $\binom{n+d}{d} \gg \deg \mathcal{V} \binom{\dim \mathcal{V}+d}{d}$.

For a bound $d \in \mathbb{N}$, a d- $SOS(\mathcal{V})$ certificate is an $F \in \mathbb{R}[x]$ s.t.

$$p(z) = F(z)$$
 for all $z \in \mathcal{V}$, $F(x)$ is SOS, $\deg(F) \le d$

This talk: a novel approach to compute SOS(V) certificates.

Sampling SOS

Def: A sampling d-SOS precertificate is a pair (F, Z) where $Z = \{z_1, \dots, z_S\} \subset \mathcal{V}$ is a set of samples and $F \in \mathbb{R}[x]$ satisfies

$$p(z_s) = F(z_s)$$
 for $s = 1, \dots, S$, $F(x)$ is SOS, $\deg(F) \le d$

It is a true certificate if furthermore p(z) = F(z) for all $z \in \mathcal{V}$.

Sampling SOS

Def: A sampling d-SOS precertificate is a pair (F, Z) where $Z = \{z_1, \dots, z_S\} \subset \mathcal{V}$ is a set of samples and $F \in \mathbb{R}[x]$ satisfies

$$p(z_s) = F(z_s)$$
 for $s = 1, \dots, S$, $F(x)$ is SOS, $\deg(F) \le d$

It is a true certificate if furthermore p(z) = F(z) for all $z \in \mathcal{V}$.

We can compute an SOS(V) certificate as follows:

- Obtain generic (random) samples from the variety.
- ② Given Z, compute a precertificate (F, Z) using an SDP.
- \odot Verify that (F, Z) is a certificate.

Sampling SOS has the following features:

• The variety \mathcal{V} is represented with a set of samples; no need to decide which equations $\{h_j\}$ to use. Also avoids multiplicities.

Sampling SOS has the following features:

- The variety $\mathcal V$ is represented with a set of samples; no need to decide which equations $\{h_i\}$ to use. Also avoids multiplicities.
- The SDP is smaller, since it takes into account the structure of the coordinate ring $\mathbb{C}[\mathcal{V}]$.

Sampling SOS has the following features:

- The variety $\mathcal V$ is represented with a set of samples; no need to decide which equations $\{h_i\}$ to use. Also avoids multiplicities.
- The SDP is smaller, since it takes into account the structure of the coordinate ring $\mathbb{C}[\mathcal{V}]$.
- Many interesting varieties are easy to sample (SO(n), Grasmannians,rank k tensors, multiview variety), even if its defining equations (or Gröbner basis) are complicated.

Sampling SOS has the following features:

- The variety $\mathcal V$ is represented with a set of samples; no need to decide which equations $\{h_i\}$ to use. Also avoids multiplicities.
- The SDP is smaller, since it takes into account the structure of the coordinate ring $\mathbb{C}[\mathcal{V}]$.
- Many interesting varieties are easy to sample (SO(n), Grasmannians,rank k tensors, multiview variety), even if its defining equations (or Gröbner basis) are complicated.
- Integrates nicely with Numerical Algebraic Geometry (NAG). In particular, it can use straight-line-programs.

Computing SOS(V) certificates

- Obtain generic (random) samples from the variety.
- ② Given Z, compute a precertificate (F, Z) using an SDP.
- **3** Verify that (F, Z) is a certificate.

1. Generic samples of a variety

Many interesting varieties are easy to sample: SO(n), Grassmannians, rank k tensors, multiview variety, secant varieties.

For instance, we can sample points in SO(n) with the Cayley parametrization

$$A \mapsto (I - A)(I + A)^{-1}$$
, for A skew symmetric

For an arbitrary \mathcal{V} , we can get generic samples using Numerical Algebraic Geometry (NAG). This offers several advantages over symbolic methods:

- naturally parellizable
- allow straight-line programs
- better numerical stability

1. Generic samples. How many?

Let d be a degree bound and \mathcal{L}_d be the subspace of $\mathbb{C}[\mathcal{V}]$ up to degree d. We need $\dim(\mathcal{L}_d)/2$ samples (Hilbert series).

Thm: Let $\mathcal{V} = \mathcal{W} \cup \overline{W}$, with \mathcal{W} irreducible. Let (F, Z) be an S-SOS pre-certificate with $\deg(F) \leq d$ and $|Z| \geq \dim(\mathcal{L}_d)/2$. If Z is generic, then (F, Z) is a certificate.

We can check if we have sufficient samples computing the rank of a matrix.

Given samples
$$Z=\{z_1,\ldots,z_S\}\subset\mathcal{V}$$
, compute pre-certificate (F,Z) : find F s.t. $F(z_s)=p(z_s)$ for $s=1,\ldots,S,$ $F(x)$ is SOS

Given samples $Z = \{z_1, \ldots, z_S\} \subset \mathcal{V}$, compute pre-certificate (F, Z):

find F

s.t.
$$F(z_s) = p(z_s)$$
 for $s = 1, ..., S$, $F(x)$ is SOS

The first constraint is affine in F. The second, is a PSD constraint.

Proposition.

F(x) is SOS iff it can be written as

$$F(x) = \mathbf{u}(x)^T Q \mathbf{u}(x), \quad Q \succeq 0$$

for some vector of monomials $\mathbf{u}(x) \in \mathbb{R}[x]^N$.

Given samples $Z = \{z_1, \ldots, z_S\} \subset \mathcal{V}$, compute pre-certificate (F, Z):

find F

s.t.
$$F(z_s) = p(z_s)$$
 for $s = 1, ..., S$, $F(x)$ is SOS

The first constraint is affine in F. The second, is a PSD constraint.

Proposition.

F(x) is SOS iff it can be written as

$$F(x) = \mathbf{u}(x)^T Q \mathbf{u}(x), \quad Q \succeq 0$$

for some vector of monomials $\mathbf{u}(x) \in \mathbb{R}[x]^N$.

Proof.

• If $Q \succeq 0$ then $Q =: V^T V$.

Given samples $Z = \{z_1, \ldots, z_S\} \subset \mathcal{V}$, compute pre-certificate (F, Z):

find F

s.t.
$$F(z_s) = p(z_s)$$
 for $s = 1, ..., S$, $F(x)$ is SOS

The first constraint is affine in F. The second, is a PSD constraint.

Proposition.

F(x) is SOS iff it can be written as

$$F(x) = \mathbf{u}(x)^T Q \mathbf{u}(x), \quad Q \succeq 0$$

for some vector of monomials $\mathbf{u}(x) \in \mathbb{R}[x]^N$.

Proof.

- If $Q \succeq 0$ then $Q =: V^T V$.
- Then $F(x) = \mathbf{f}(x)^T \mathbf{f}(x)$, where $\mathbf{f}(x) := V \mathbf{u}(x)$.

Given $Z \subset \mathcal{V}$ and a vector $\mathbf{u}(x) \in \mathbb{R}[x]^N$, the sampling SDP is

find
$$Q \in \mathbb{R}^{N \times N}$$
, $Q \succeq 0$
s.t. $Q \bullet u(z_s)u(z_s)^T = p(z_s)$, for $s = 1, ..., S$

Features:

- p can be a straight-line program.
- constraint matrices have low rank.
- we may reduce complexity by orthogonalizing u(x) w.r.t.

$$\langle f,g \rangle_{\mathcal{Z}} := \sum_{z_s \in \mathcal{Z}} (f(z_s)g(\overline{z_s}) + f(\overline{z_s})g(z_s)).$$

Uses the structure of the coordinate ring $\mathbb{C}[\mathcal{V}]$.

Given $Z \subset \mathcal{V}$ and a vector $\mathbf{u}(x) \in \mathbb{R}[x]^N$, the sampling SDP is

find
$$Q \in \mathbb{R}^{N \times N}$$
, $Q \succeq 0$
s.t. $Q \bullet u(z_s)u(z_s)^T = p(z_s)$, for $s = 1, ..., S$

Features:

- p can be a straight-line program.
- constraint matrices have low rank.
- we may reduce complexity by orthogonalizing u(x) w.r.t.

$$\langle f,g \rangle_{\mathcal{Z}} := \sum_{z_s \in \mathcal{Z}} (f(z_s)g(\overline{z_s}) + f(\overline{z_s})g(z_s)).$$

Uses the structure of the coordinate ring $\mathbb{C}[\mathcal{V}]$.

Simple example: SO(2)

$$p(X) = 4X_{21} - 2X_{11}X_{22} - 2X_{12}X_{21} + 3$$
 is nonnegative on $V = SO(2)$.

Simple example: SO(2)

$$p(X) = 4X_{21} - 2X_{11}X_{22} - 2X_{12}X_{21} + 3$$
 is nonnegative on $V = SO(2)$.

Take 3 complex samples of ${\cal V}$

$$z_1 = \left[\begin{smallmatrix} -0.6 + 0.8i & 1.2 + 0.4i \\ -1.2 - 0.4i & -0.6 + 0.8i \end{smallmatrix} \right], \ z_2 = \left[\begin{smallmatrix} -1.2 + 0.4i & 0.6 + 0.8i \\ -0.6 - 0.8i & -1.2 + 0.4i \end{smallmatrix} \right], \ z_3 = \left[\begin{smallmatrix} -0.75 + 0.25i & 0.75 + 0.25i \\ -0.75 - 0.25i & -0.75 + 0.25i \end{smallmatrix} \right].$$

Let
$$\mathbf{u}(x) = (1, X_{11}, X_{12}, X_{21}, X_{22})$$
 (5 terms). Orthogonalizing we get $\mathbf{u}^{\circ}(X) = (X_{21} + X_{22} - .8054, X_{21} - X_{22}, X_{21} + X_{22} + 2.4831)$ (3 terms)

Solving the SDP

find
$$Q \in \mathbb{R}^{3\times3}, \quad Q \succeq 0$$

s.t. $p(z_s) = Q \bullet u^o(z_s)u^o(z_s)^T, \quad \text{ for } s = 1, 2, 3$

we get
$$F(X) = (2X_{21} + 1)^2$$
.

3. Verifying S-SOS certificates

Verifying the validity of a pre-certificate (F, Z), means testing if g := p - F is identically zero on V

3. Verifying S-SOS certificates

Verifying the validity of a pre-certificate (F, Z), means testing if g := p - F is identically zero on V

This is the *polynomial identity testing* problem and there is a "probability-one" randomized algorithm:

consider a generic point z on each component of \mathcal{V} , and check if g(z)=0.

Example: Nilpotent matrices

Let V be the variety of nilpotent matrices and p(X) := det(X + I). **Equations:**

- (naive) The n^2 equations given by $X^n = 0$ have n^{n+1} terms!!!
- (smarter) We know a Gröbner basis ($\sim n!$ terms). Computing the normal form of p(X) (n! terms) is too hard!!!

Example: Nilpotent matrices

Let V be the variety of nilpotent matrices and p(X) := det(X + I).

Equations:

- (naive) The n^2 equations given by $X^n = 0$ have n^{n+1} terms!!!
- (smarter) We know a Gröbner basis ($\sim n!$ terms). Computing the normal form of p(X) (n! terms) is too hard!!!

Sampling:

- Easy to sample nilpotent matrices.
- For each sample X_s , we can evaluate $p(X_s)$ with Gaussian elimination.
- Since $p(X_s) = 1$ for all samples X_s , then $p(X) = (1)^2$ on the variety.

Example: Nilpotent matrices

Let V be the variety of nilpotent matrices and p(X) := det(X + I).

Equations:

- (naive) The n^2 equations given by $X^n = 0$ have n^{n+1} terms!!!
- (smarter) We know a Gröbner basis ($\sim n!$ terms). Computing the normal form of p(X) (n! terms) is too hard!!!

Sampling:

- Easy to sample nilpotent matrices.
- For each sample X_s , we can evaluate $p(X_s)$ with Gaussian elimination.
- Since $p(X_s) = 1$ for all samples X_s , then $p(X) = (1)^2$ on the variety.

Advantages:

- Avoid the problem of which equations to use (multiplicities).
- We can use straight-line programs (Gaussian elimination).
- Coordinate ring reduction.

Example: Orthogonal Procrustes

Weighted Orthog Procrustes

min
$$X$$
 $\|AXC - B\|$
s.t. $X^T X = I_k$
 $X \in \mathbb{R}^{n \times k}$

The sampling SDP is:

$$\max_{Q,\gamma} \quad \gamma$$
s.t. $\|AX_sC - B\|^2 - \gamma = Q \bullet u(X_s)u(X_s)^T$
 $Q \succeq 0$

n	r	variables	equations SDP constraints	time(s)	Gröbner basis (s)	variables	Sampling SDP constraints	time(s)
5	3	682	233	0.65	0.03	137	130	0.11
6	4	1970	576	1.18	9.94	326	315	0.14
7	5	4727	1207	3.56	_	667	651	0.24
8	6	9954	2255	13.88	-	1226	1204	0.45
9	7	19028	3873	42.14	- 1	2081	2052	1.10
10	8	33762	6238	124.43	-	3322	3285	2.48

Example: Cyclic 9-roots

Let $\mathcal{V}\subset\mathbb{C}^9$ be the positive dimensional part of the cyclic 9-roots problem

$$x_1 + x_2 + \dots + x_8 + x_9 = 0$$

$$x_1x_2 + x_2x_3 + \dots + x_8x_9 + x_9x_1 = 0$$

$$\vdots$$

$$x_1x_2x_3x_4x_5x_6x_7x_8 + \dots + x_9x_1x_2x_3x_4x_5x_6x_7 = 0$$

$$x_1x_2x_3x_4x_5x_6x_7x_8x_9 = 1$$

Let's certify that $\mathcal{V} \cap \mathbb{R}^9 = \emptyset$ by showing that -1 is SOS on \mathcal{V} .

Example: Cyclic 9-roots

Let $\mathcal{V}\subset\mathbb{C}^9$ be the positive dimensional part of the cyclic 9-roots problem

$$x_1 + x_2 + \dots + x_8 + x_9 = 0$$

$$x_1x_2 + x_2x_3 + \dots + x_8x_9 + x_9x_1 = 0$$

$$\vdots$$

$$x_1x_2x_3x_4x_5x_6x_7x_8 + \dots + x_9x_1x_2x_3x_4x_5x_6x_7 = 0$$

$$x_1x_2x_3x_4x_5x_6x_7x_8x_9 = 1$$

Let's certify that $\mathcal{V} \cap \mathbb{R}^9 = \emptyset$ by showing that -1 is SOS on \mathcal{V} .

Gröbner basis computation is complicated (M2 ran out of memory $\sim 5h$).

Sampling + **NAG** is simpler: Bertini gets generic samples in 2h45m, and then we find an SOS(V) certificate in only 0.75s.

Summary

- A new approach to SOS, that represents a variety with a generic set of samples (instead of some equations $h_j(x) = 0$)
- Takes advantage of coordinate ring reductions.
- Integrates SOS with NAG.

Summary

- A new approach to SOS, that represents a variety with a generic set of samples (instead of some equations $h_j(x) = 0$)
- Takes advantage of coordinate ring reductions.
- Integrates SOS with NAG.

If you want to know more:

 D. Cifuentes, P.A. Parrilo, Sampling algebraic varieties for sum of squares programs arXiv:1511.06751.

Gracias!