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Polynomial optimization on varieties

We consider a problem of the form

min
x

p(x)

s.t. x ∈ V

where p ∈ R[x ] is a polynomial and V ⊂ Rn is an algebraic variety.

A variety is the zero set of some set of polynomial equations:

V = {x ∈ Rn : hj(x) = 0, 1 ≤ j ≤ m}, hj ∈ R[x ].

Examples: SO(n), Grassmannian, Stiefel manifold, rank k tensors, {0, 1}n
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Polynomial optimization on varieties

Several applications: triangulation (vision), matrix completion, optimal
power flow, low rank approximation, combinatorial optimization.
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Sum-of-Squares (SOS)

For a polynomial p ∈ R[x ] consider deciding nonnegavity

is p(x) ≥ 0 for all x ∈ V?

This is computationally hard.

Tractable alternative: Convex relaxations based on semidefinite
programming (SDP).

A sufficient condition is the existence of some F ∈ R[x ] such that

p(z) = F (z) for all z ∈ V (i.e., p ≡ F mod I(V))
F (x) is SOS (i.e., F (x) =

∑
i

f 2
i (x))
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SOS(V) certificates

For a bound d ∈ N, a d-SOS(V) certificate is an F ∈ R[x ] s.t.

p(z) = F (z) for all z ∈ V, F (x) is SOS, deg(F ) ≤ d
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SOS(V) certificates

For a bound d ∈ N, a d-SOS(V) certificate is an F ∈ R[x ] s.t.

p(z) = F (z) for all z ∈ V, F (x) is SOS, deg(F ) ≤ d

Computing SOS(V) certificates:
Compute a Gröbner bases of I(V).
Find F using semidefinite programming (SDP) — polynomial time.
In some cases we know a Gröbner basis (e.g., V = {0, 1}n).
But it is typically very hard to find it.
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SOS(V) certificates

For a bound d ∈ N, a d-SOS(V) certificate is an F ∈ R[x ] s.t.

p(z) = F (z) for all z ∈ V, F (x) is SOS, deg(F ) ≤ d

Equations SOS: relax the first condition to p = F +
∑

j hjgj , where V =
{x : hj(x) = 0}j . Although often used in practice,

this approach is weaker than SOS(V).
SDP is larger, e.g., PSD matrix size

(n+d
d
)
� degV

(dimV+d
d

)
.
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SOS(V) certificates

For a bound d ∈ N, a d-SOS(V) certificate is an F ∈ R[x ] s.t.

p(z) = F (z) for all z ∈ V, F (x) is SOS, deg(F ) ≤ d

This talk: a novel approach to compute SOS(V) certificates.

Cifuentes (MIT) Sampling varieties for SOS optimization Uniandes ’17 5 / 18



Sampling SOS

Def: A sampling d-SOS precertificate is a pair (F , Z ) where
Z = {z1, . . . , zS} ⊂ V is a set of samples and F ∈ R[x ] satisfies

p(zs) = F (zs) for s = 1, . . . , S, F (x) is SOS, deg(F ) ≤ d

It is a true certificate if furthermore p(z) = F (z) for all z ∈ V.

We can compute an SOS(V) certificate as follows:
1 Obtain generic (random) samples from the variety.
2 Given Z , compute a precertificate (F , Z ) using an SDP.
3 Verify that (F , Z ) is a certificate.
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Sampling SOS (S-SOS)

Sampling SOS has the following features:
The variety V is represented with a set of samples; no need to decide
which equations {hj} to use. Also avoids multiplicities.

The SDP is smaller, since it takes into account the structure of the
coordinate ring C[V].
Many interesting varieties are easy to sample (SO(n), Grasmannians,
rank k tensors, multiview variety), even if its defining equations (or
Gröbner basis) are complicated.
Integrates nicely with Numerical Algebraic Geometry (NAG). In
particular, it can use straight-line-programs.
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Computing SOS(V) certificates

1 Obtain generic (random) samples from the variety.
2 Given Z , compute a precertificate (F , Z ) using an SDP.
3 Verify that (F , Z ) is a certificate.
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1. Generic samples of a variety

Many interesting varieties are easy to sample: SO(n), Grassmannians,
rank k tensors, multiview variety, secant varieties.

For instance, we can sample points in SO(n) with the Cayley
parametrization

A 7→ (I − A)(I + A)−1, for A skew symmetric

For an arbitrary V, we can get generic samples using Numerical Algebraic
Geometry (NAG). This offers several advantages over symbolic methods:

naturally parellizable
allow straight-line programs
better numerical stability
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1. Generic samples. How many?

Let d be a degree bound and Ld be the subspace of C[V] up to degree d .
We need dim(Ld )/2 samples (Hilbert series).

Thm: Let V =W ∪W , with W irreducible. Let (F , Z ) be an S-SOS
pre-certificate with deg(F ) ≤ d and |Z | ≥ dim(Ld )/2. If Z is generic,
then (F , Z ) is a certificate.

We can check if we have sufficient samples computing the rank of a matrix.
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2. Sampling SDP
Given samples Z = {z1, . . . , zS} ⊂ V, compute pre-certificate (F , Z ):

find F
s.t. F (zs) = p(zs) for s = 1, . . . , S, F (x) is SOS

The first constraint is affine in F . The second, is a PSD constraint.
Proposition.
F (x) is SOS iff it can be written as

F (x) = u(x)T Qu(x), Q � 0

for some vector of monomials u(x) ∈ R[x ]N .

Proof.

If Q � 0 then Q =: V T V .
Then F (x) = f (x)T f (x), where f (x) := V u(x).
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2. Sampling SDP

Given Z ⊂ V and a vector u(x) ∈ R[x ]N , the sampling SDP is

find Q ∈ RN×N , Q � 0
s.t. Q • u(zs)u(zs)T = p(zs), for s = 1, . . . , S

Features:
p can be a straight-line program.
constraint matrices have low rank.
we may reduce complexity by orthogonalizing u(x) w.r.t.

〈f , g〉Z :=
∑

zs∈Z (f (zs)g(zs) + f (zs)g(zs)).

Uses the structure of the coordinate ring C[V].
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Simple example: SO(2)

p(X ) = 4X21 − 2X11X22 − 2X12X21 + 3 is nonnegative on V = SO(2).

Take 3 complex samples of V

z1 =
[ −0.6+0.8i 1.2+0.4i

−1.2−0.4i −0.6+0.8i
]
, z2 =

[ −1.2+0.4i 0.6+0.8i
−0.6−0.8i −1.2+0.4i

]
, z3 =

[ −0.75+0.25i 0.75+0.25i
−0.75−0.25i −0.75+0.25i

]
.

Let u(x) = (1, X11, X12, X21, X22) (5 terms). Orthogonalizing we get

uo(X) = (X21 + X22 − .8054, X21 − X22, X21 + X22 + 2.4831) (3 terms)

Solving the SDP

find Q ∈ R3×3, Q � 0
s.t. p(zs) = Q • uo(zs)uo(zs)T , for s = 1, 2, 3

we get F (X ) = (2X21 + 1)2.
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3. Verifying S-SOS certificates

Verifying the validity of a pre-certificate (F , Z ),
means testing if g := p − F is identically zero on V

This is the polynomial identity testing problem and there is a
“probability-one” randomized algorithm:

consider a generic point z on each component of V, and check if g(z) = 0.
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Example: Nilpotent matrices

Let V be the variety of nilpotent matrices and p(X ) := det(X + I).
Equations:

(naive) The n2 equations given by X n = 0 have nn+1 terms!!!
(smarter) We know a Gröbner basis (∼ n! terms). Computing the
normal form of p(X ) (n! terms) is too hard!!!

Sampling:
Easy to sample nilpotent matrices.
For each sample Xs , we can evaluate p(Xs) with Gaussian elimination.
Since p(Xs) = 1 for all samples Xs , then p(X ) = (1)2 on the variety.

Advantages:
Avoid the problem of which equations to use (multiplicities).
We can use straight-line programs (Gaussian elimination).
Coordinate ring reduction.
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(smarter) We know a Gröbner basis (∼ n! terms). Computing the
normal form of p(X ) (n! terms) is too hard!!!

Sampling:
Easy to sample nilpotent matrices.
For each sample Xs , we can evaluate p(Xs) with Gaussian elimination.
Since p(Xs) = 1 for all samples Xs , then p(X ) = (1)2 on the variety.

Advantages:
Avoid the problem of which equations to use (multiplicities).
We can use straight-line programs (Gaussian elimination).
Coordinate ring reduction.

Cifuentes (MIT) Sampling varieties for SOS optimization Uniandes ’17 15 / 18



Example: Nilpotent matrices

Let V be the variety of nilpotent matrices and p(X ) := det(X + I).
Equations:

(naive) The n2 equations given by X n = 0 have nn+1 terms!!!
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Example: Orthogonal Procrustes

Weighted Orthog Procrustes
min X ‖AXC − B‖

s.t. X T X = Ik
X ∈ Rn×k

The sampling SDP is:
maxQ,γ γ

s.t. ‖AXsC − B‖2 − γ = Q • u(Xs)u(Xs)T

Q � 0

n r Equations SDP Gröbner Sampling SDP
variables constraints time(s) basis (s) variables constraints time(s)

5 3 682 233 0.65 0.03 137 130 0.11
6 4 1970 576 1.18 9.94 326 315 0.14
7 5 4727 1207 3.56 - 667 651 0.24
8 6 9954 2255 13.88 - 1226 1204 0.45
9 7 19028 3873 42.14 - 2081 2052 1.10
10 8 33762 6238 124.43 - 3322 3285 2.48

Cifuentes (MIT) Sampling varieties for SOS optimization Uniandes ’17 16 / 18



Example: Cyclic 9-roots

Let V ⊂ C9 be the positive dimensional part of the cyclic 9-roots problem

x1 + x2 + · · ·+ x8 + x9 = 0
x1x2 + x2x3 + · · ·+ x8x9 + x9x1 = 0

...
x1x2x3x4x5x6x7x8 + · · ·+ x9x1x2x3x4x5x6x7 = 0

x1x2x3x4x5x6x7x8x9 = 1

Let’s certify that V ∩ R9 = ∅ by showing that −1 is SOS on V.

Gröbner basis computation is complicated (M2 ran out of memory ∼ 5h).

Sampling + NAG is simpler: Bertini gets generic samples in 2h 45m, and
then we find an SOS(V) certificate in only 0.75s.
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Gröbner basis computation is complicated (M2 ran out of memory ∼ 5h).

Sampling + NAG is simpler: Bertini gets generic samples in 2h 45m, and
then we find an SOS(V) certificate in only 0.75s.

Cifuentes (MIT) Sampling varieties for SOS optimization Uniandes ’17 17 / 18



Summary

A new approach to SOS, that represents a variety with a generic set
of samples (instead of some equations hj(x) = 0)
Takes advantage of coordinate ring reductions.
Integrates SOS with NAG.

If you want to know more:
D. Cifuentes, P.A. Parrilo, Sampling algebraic varieties for sum of squares programs
arXiv:1511.06751.

Gracias!
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